Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(10): 3640-3660, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38455002

RESUMO

A catalyst possessing a broad substrate scope, in terms of both turnover and enantioselectivity, is sometimes called "general". Despite their great utility in asymmetric synthesis, truly general catalysts are difficult or expensive to discover via traditional high-throughput screening and are, therefore, rare. Existing computational tools accelerate the evaluation of reaction conditions from a pre-defined set of experiments to identify the most general ones, but cannot generate entirely new catalysts with enhanced substrate breadth. For these reasons, we report an inverse design strategy based on the open-source genetic algorithm NaviCatGA and on the OSCAR database of organocatalysts to simultaneously probe the catalyst and substrate scope and optimize generality as a primary target. We apply this strategy to the Pictet-Spengler condensation, for which we curate a database of 820 reactions, used to train statistical models of selectivity and activity. Starting from OSCAR, we define a combinatorial space of millions of catalyst possibilities, and perform evolutionary experiments on a diverse substrate scope that is representative of the whole chemical space of tetrahydro-ß-carboline products. While privileged catalysts emerge, we show how genetic optimization can address the broader question of generality in asymmetric synthesis, extracting structure-performance relationships from the challenging areas of chemical space.

2.
Adv Mater ; 36(2): e2305602, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37815223

RESUMO

The high-throughput exploration and screening of molecules for organic electronics involves either a 'top-down' curation and mining of existing repositories, or a 'bottom-up' assembly of user-defined fragments based on known synthetic templates. Both are time-consuming approaches requiring significant resources to compute electronic properties accurately. Here, 'top-down' is combined with 'bottom-up' through automatic assembly and statistical models, thus providing a platform for the fragment-based discovery of organic electronic materials. This study generates a top-down set of 117K synthesized molecules containing structures, electronic and topological properties and chemical composition, and uses them as building blocks for bottom-up design. A tool is developed to automate the coupling of these building blocks at their C(sp2/sp)-H bonds, providing a fundamental link between the two dataset construction philosophies. Statistical models are trained on this dataset and a subset of resulting top-down/bottom-up compounds, enabling on-the-fly prediction of ground and excited state properties with high accuracy across organic compound space. With access to ab initio-quality optical properties, this bottom-up pipeline may be applied to any materials design campaign using existing compounds as building blocks. To illustrate this, over a million molecules are screened for singlet fission. tThe leading candidates provide insight into the features promoting this multiexciton-generating process.

3.
Chimia (Aarau) ; 77(3): 139-143, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38047817

RESUMO

In this minireview, we overview a computational pipeline developed within the framework of NCCR Catalysis that can be used to successfully reproduce the enantiomeric ratios of homogeneous catalytic reactions. At the core of this pipeline is the SCINE Molassembler module, a graph-based software that provides algorithms for molecular construction of all periodic table elements. With this pipeline, we are able to simultaneously functionalizenand generate ensembles of transition state conformers, which permits facile exploration of the influencenof various substituents on the overall enantiomeric ratio. This allows preconceived back-of-the-envelope designnmodels to be tested and subsequently refined by providing quick and reliable access to energetically low-lyingntransition states, which represents a key step in undertaking in silico catalyst optimization.

4.
Chimia (Aarau) ; 77(1-2): 39-47, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38047852

RESUMO

In this account, we discuss the use of genetic algorithms in the inverse design process of homogeneous catalysts for chemical transformations. We describe the main components of evolutionary experiments, specifically the nature of the fitness function to optimize, the library of molecular fragments from which potential catalysts are assembled, and the settings of the genetic algorithm itself. While not exhaustive, this review summarizes the key challenges and characteristics of our own (i.e., NaviCatGA) and other GAs for the discovery of new catalysts.

5.
J Chem Inf Model ; 63(15): 4483-4489, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37537899

RESUMO

It is well-known that the activity and function of proteins is strictly correlated with their secondary, tertiary, and quaternary structures. Their biological role is regulated by their conformational flexibility and global fold, which, in turn, is largely governed by complex noncovalent interaction networks. Because of the large size of proteins, the analysis of their noncovalent interaction networks is challenging, but can provide insights into the energetics of conformational changes or protein-protein and protein-ligand interactions. The noncovalent interaction (NCI) index, based on the reduced density gradient, is a well-established tool for the detection of weak contacts in biological systems. In this work, we present a web-based application to expand the use of this index to proteins, which only requires a molecular structure as input and provides a mapping of the number, type, and strength of noncovalent interactions. Structure preparation is automated and allows direct importing from the PDB database, making this server (https://nciweb.dsi.upmc.fr) accessible to scientists with limited experience in bioinformatics. A quick overview of this tool and concise instructions are presented, together with an illustrative application.

6.
J Chem Theory Comput ; 19(3): 1063-1079, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36656682

RESUMO

The noncovalent interaction (NCI) index is nowadays a well-known strategy to detect NCIs in molecular systems. Even though it initially provided only qualitative descriptions, the technique has been recently extended to also extract quantitative information. To accomplish this task, integrals of powers of the electron distribution were considered, with the requirement that the overall electron density can be clearly decomposed as sum of distinct fragment contributions to enable the definition of the (noncovalent) integration region. So far, this was done by only exploiting approximate promolecular electron densities, which are given by the sum of spherically averaged atomic electron distributions and thus represent too crude approximations. Therefore, to obtain more quantum mechanically (QM) rigorous results from NCI index analyses, in this work, we propose to use electron densities obtained through the transfer of extremely localized molecular orbitals (ELMOs) or through the recently developed QM/ELMO embedding technique. Although still approximate, the electron distributions resulting from the abovementioned methods are fully QM and, above all, are again partitionable into subunit contributions, which makes them completely suitable for the NCI integral approach. Therefore, we benchmarked the integrals resulting from NCI index analyses (both those based on the promolecular densities and those based on ELMO electron distributions) against interaction energies computed at a high quantum chemical level (in particular, at the coupled cluster level). The performed test calculations have indicated that the NCI integrals based on ELMO electron densities outperform the promolecular ones. Furthermore, it was observed that the novel quantitative NCI-(QM/)ELMO approach can be also profitably exploited both to characterize and evaluate the strength of specific interactions between ligand subunits and protein residues in protein-ligand complexes and to follow the evolution of NCIs along trajectories of molecular dynamics simulations. Although further methodological improvements are still possible, the new quantitative ELMO-based technique could be already exploited in situations in which fast and reliable assessments of NCIs are crucial, such as in computational high-throughput screenings for drug discovery.

7.
Chem Sci ; 13(46): 13782-13794, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36544722

RESUMO

The automated construction of datasets has become increasingly relevant in computational chemistry. While transition-metal catalysis has greatly benefitted from bottom-up or top-down strategies for the curation of organometallic complexes libraries, the field of organocatalysis is mostly dominated by case-by-case studies, with a lack of transferable data-driven tools that facilitate both the exploration of a wider range of catalyst space and the optimization of reaction properties. For these reasons, we introduce OSCAR, a repository of 4000 experimentally derived organocatalysts along with their corresponding building blocks and combinatorially enriched structures. We outline the fragment-based approach used for database generation and showcase the chemical diversity, in terms of functions and molecular properties, covered in OSCAR. The structures and corresponding stereoelectronic properties are publicly available (https://archive.materialscloud.org/record/2022.106) and constitute the starting point to build generative and predictive models for organocatalyst performance.

8.
Phys Chem Chem Phys ; 24(42): 26134-26143, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36278432

RESUMO

The allene radical cation can be stabilized both by Jahn-Teller distortion of the bond lengths and by torsion of the end-groups. However, only the latter happens and the allene radical cation relaxes into a twisted D2 symmetry structure with equal double-bond lengths. Here we revisit the Jahn-Teller distortion of allene and spiropentadiene by assessing the possible implications of their helical π-systems in the radical cations. We describe a general relation between the structure and the number of π-electrons in spiroconjugated and linearly conjugated systems. Through constrained optimizations we compare the stabilization achieved by bond-length alternation and axial torsion in the radical cations, which we explain with a simple frontier molecular orbital (MO) picture. While structurally different, allene and spiropentadiene have similar helical frontier MOs. Both cations relax through torsion because the stabilization of their helical frontier MOs is bigger than that which can be achieved by linear π-conjugation. Electrohelicity thus manifests in molecular systems with partial occupation as a helical π-conjugation effect, which evidently provides more stabilization than its linear counterpart in terms of the Jahn-Teller distortion. This mechanism may be a driving factor for the relaxation in a range of spiroconjugated and linearly conjugated cationic systems.

9.
Phys Chem Chem Phys ; 24(36): 21538-21548, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36069366

RESUMO

We provide a comprehensive overview of the chemical information from electron density: not only how to extract information, but also how to obtain and how to assess the quality of the electron density itself. After introducing several indexes derived from electron density, which allow bonding to be revealed, we focus on the various potential sources of electron density, and also explain the error trends they show so that a judicious choice of methods and limitations are clearly laid on the table. Computational, experimental-computational combinations, and machine learning efforts are covered in this work.


Assuntos
Elétrons , Aprendizado de Máquina
10.
Nat Protoc ; 17(11): 2550-2569, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35978038

RESUMO

Volcano plots and activity maps are powerful tools for studying homogeneous catalysis. Once constructed, they can be used to estimate and predict the performance of a catalyst from one or more descriptor variables. The relevance and utility of these tools has been demonstrated in several areas of catalysis, with recent applications to homogeneous catalysts having been pioneered by our research group. Both volcano plots and activity maps are built from linear free energy scaling relationships that connect the value of a descriptor variable(s) with the relative energies of other catalytic cycle intermediates/transition states. These relationships must be both constructed and postprocessed appropriately to obtain the resulting plots/maps; this process requires careful execution to obtain meaningful results. In this protocol, we provide a step-by-step guide to building volcano plots and activity maps using curated reaction profile data. The reaction profile data are obtained using density functional theory computations to model the catalytic cycle. In addition, we provide volcanic, a Python code that automates the steps of the process following data acquisition. Unlike the computation of individual reaction energy profiles, our tools lead to a holistic view of homogeneous catalyst performance that can be broadly applied for both explanatory and screening purposes.


Assuntos
Catálise
11.
Chem Sci ; 13(23): 6858-6864, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35774159

RESUMO

The computation of reaction selectivity represents an appealing complementary route to experimental studies and a powerful means to refine catalyst design strategies. Accurately establishing the selectivity of reactions facilitated by molecular catalysts, however, remains a challenging task for computational chemistry. The small free energy differences that lead to large variations in the enantiomeric ratio (er) represent particularly tricky quantities to predict with sufficient accuracy to be helpful for prioritizing experiments. Further complicating this problem is the fact that standard approaches typically consider only one or a handful of conformers identified through human intuition as pars pro toto of the conformational space. Obviously, this assumption can potentially lead to dramatic failures should key energetic low-lying structures be missed. Here, we introduce a multi-level computational pipeline leveraging the graph-based Molassembler library to construct an ensemble of molecular catalysts. The manipulation and interpretation of molecules as graphs provides a powerful and direct route to tailored functionalization and conformer generation that facilitates high-throughput mechanistic investigations of chemical reactions. The capabilities of this approach are validated by examining a Rh(iii) catalyzed asymmetric C-H activation reaction and assessing the limitations associated with the underlying ligand design model. Specifically, the presence of remarkably flexible chiral Cp ligands, which induce the experimentally observed high level of selectivity, present a rich configurational landscape where multiple unexpected conformations contribute to the reported enantiomeric ratios (er). Using Molassembler, we show that considering about 20 transition state conformations per catalysts, which are generated with little human intervention and are not tied to "back-of-the-envelope" models, accurately reproduces experimental er values with limited computational expense.

12.
J Chem Phys ; 156(15): 154112, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35459295

RESUMO

Non-covalent bonding patterns are commonly harvested as a design principle in the field of catalysis, supramolecular chemistry, and functional materials to name a few. Yet, their computational description generally neglects finite temperature and environment effects, which promote competing interactions and alter their static gas-phase properties. Recently, neural network potentials (NNPs) trained on density functional theory (DFT) data have become increasingly popular to simulate molecular phenomena in condensed phase with an accuracy comparable to ab initio methods. To date, most applications have centered on solid-state materials or fairly simple molecules made of a limited number of elements. Herein, we focus on the persistence and strength of chalcogen bonds involving a benzotelluradiazole in condensed phase. While the tellurium-containing heteroaromatic molecules are known to exhibit pronounced interactions with anions and lone pairs of different atoms, the relevance of competing intermolecular interactions, notably with the solvent, is complicated to monitor experimentally but also challenging to model at an accurate electronic structure level. Here, we train direct and baselined NNPs to reproduce hybrid DFT energies and forces in order to identify what the most prevalent non-covalent interactions occurring in a solute-Cl--THF mixture are. The simulations in explicit solvent highlight the clear competition with chalcogen bonds formed with the solvent and the short-range directionality of the interaction with direct consequences for the molecular properties in the solution. The comparison with other potentials (e.g., AMOEBA, direct NNP, and continuum solvent model) also demonstrates that baselined NNPs offer a reliable picture of the non-covalent interaction interplay occurring in solution.


Assuntos
Redes Neurais de Computação , Ânions/química , Solventes
13.
Angew Chem Int Ed Engl ; 61(32): e202202727, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35447004

RESUMO

The immobilization of molecular catalysts imposes spatial constraints on their active site. We reveal that in bifunctional catalysis such constraints can also be utilized as an appealing handle to boost intrinsic activity through judicious control of the active site geometry. To demonstrate this, we develop a pragmatic approach, based on nonlinear scaling relationships, to map the spatial arrangements of the acid-base components of frustrated Lewis pairs (FLPs) to their performance in the catalytic hydrogenation of CO2 . The resulting activity map shows that fixing the donor-acceptor centers at specific distances and locking them into appropriate orientations leads to an unforeseen many-fold increase in the catalytic activity of FLPs compared to their unconstrained counterparts.

14.
Chem Sci ; 12(20): 6879-6889, 2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-34123316

RESUMO

Hundreds of catalytic methods are developed each year to meet the demand for high-purity chiral compounds. The computational design of enantioselective organocatalysts remains a significant challenge, as catalysts are typically discovered through experimental screening. Recent advances in combining quantum chemical computations and machine learning (ML) hold great potential to propel the next leap forward in asymmetric catalysis. Within the context of quantum chemical machine learning (QML, or atomistic ML), the ML representations used to encode the three-dimensional structure of molecules and evaluate their similarity cannot easily capture the subtle energy differences that govern enantioselectivity. Here, we present a general strategy for improving molecular representations within an atomistic machine learning model to predict the DFT-computed enantiomeric excess of asymmetric propargylation organocatalysts solely from the structure of catalytic cycle intermediates. Mean absolute errors as low as 0.25 kcal mol-1 were achieved in predictions of the activation energy with respect to DFT computations. By virtue of its design, this strategy is generalisable to other ML models, to experimental data and to any catalytic asymmetric reaction, enabling the rapid screening of structurally diverse organocatalysts from available structural information.

15.
Oxid Med Cell Longev ; 2021: 6673661, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33510840

RESUMO

The human apoptosis-inducing factor (hAIF) is a moonlight flavoprotein involved in mitochondrial respiratory complex assembly and caspase-independent programmed cell death. These functions might be modulated by its redox-linked structural transition that enables hAIF to act as a NAD(H/+) redox sensor. Upon reduction with NADH, hAIF undergoes a conformational reorganization in two specific insertions-the flexible regulatory C-loop and the 190-202 ß-harpin-promoting protein dimerization and the stabilization of a long-life charge transfer complex (CTC) that modulates its monomer-dimer equilibrium and its protein interaction network in healthy mitochondria. In this regard, here, we investigated the precise function of the ß-hairpin in the AIF conformation landscape related to its redox mechanism, by analyzing the role played by W196, a key residue in the interaction of this motif with the regulatory C-loop. Mutations at W196 decrease the compactness and stability of the oxidized hAIF, indicating that the ß-hairpin and C-loop coupling contribute to protein stability. Kinetic studies complemented with computational simulations reveal that W196 and the ß-hairpin conformation modulate the low efficiency of hAIF as NADH oxidoreductase, contributing to configure its active site in a noncompetent geometry for hydride transfer and to stabilize the CTC state by enhancing the affinity for NAD+. Finally, the ß-hairpin motif contributes to define the conformation of AIF's interaction surfaces with its physiological partners. These findings improve our understanding on the molecular basis of hAIF's cellular activities, a crucial aspect for clarifying its associated pathological mechanisms and developing new molecular therapies.


Assuntos
Fator de Indução de Apoptose/química , NAD/química , Motivos de Aminoácidos , Fator de Indução de Apoptose/genética , Humanos , Oxirredução , Conformação Proteica em Folha beta , Estabilidade Proteica
16.
J Comput Chem ; 42(5): 334-343, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33301201

RESUMO

The bonding and antibonding character of individual molecular orbitals has been previously shown to be related to their orbital energy derivatives with respect to nuclear coordinates, known as dynamical orbital forces. Albeit usually derived from Koopmans' theorem, in this work we show a more general derivation from conceptual DFT, which justifies application in a broader context. The consistency of the approach is validated numerically for valence orbitals in Kohn-Sham DFT. Then, we illustrate its usefulness by showcasing applications in aromatic and antiaromatic systems and in excited state chemistry. Overall, dynamical orbital forces can be used to interpret the results of routine ab initio calculations, be it wavefunction or density based, in terms of forces and occupations.

17.
Phys Chem Chem Phys ; 22(37): 21251-21256, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32935706

RESUMO

A textbook case of twisted structure due to hydrogen-hydrogen steric clash, the biphenyl molecule, has been studied in real space from a new perspective. Long-term discrepancies regarding the origin of the steric repulsion are now reconciled under the NCI (Non Covalent Interaction) method, which reflects in 3D the balance between attractive and repulsive interactions taking place in the region between the phenyl rings. The NCI method confirms that the steric repulsion does not merely come from the H-H interaction itself, but from the many-atom interactions arising from the Cortho-H region, therefore providing rigorous physical grounds for the steric clash. This method allows a continuous scan of all the subtle changes on the electron density on going from the planar to the perpendicular biphenyl structure. The NCI results agree with other topological approaches (IQA, ELF) and are in line with previous findings in the literature regarding controversial H-H interactions in steric clash situations: H-H interactions are attractive, but repulsion appears between (Cortho-H)(Cortho-H), raising the intraatomic energy of the ortho H. ELF is also used to support these conclusions. Indeed, deformations are observed in compressed basins that allow to visualize the intraatomic effect of steric repulsion. These results can be easily extrapolated to systems with similar topological features in which steric clash is claimed to be the reason for instability.

18.
J Chem Theory Comput ; 16(7): 4150-4158, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32470306

RESUMO

The NonCovalent Interaction index (NCI) enables identification of attractive and repulsive noncovalent interactions from promolecular densities in a fast manner. However, the approach remained up to now qualitative, only providing visual information. We present a new version of NCIPLOT, NCIPLOT4, which allows quantifying the properties of the NCI regions (volume, charge) in small and big systems in a fast manner. Examples are provided of how this new twist enables characterization and retrieval of local information in supramolecular chemistry and biosystems at the static and dynamic levels.

19.
J Phys Chem A ; 124(1): 176-184, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31829594

RESUMO

A simple bond charge model is proposed to predict intrinsic bond energies. Model parameters can be derived from the topology of the electron localization function and equilibrium geometries through classic considerations. Results for carbon-carbon covalent bonds are shown to be very accurate in different chemical environments. Insight can be extracted from the application of the model due to its elementary construction and simple mathematical formulation. The remarkable robustness of the fitted model highlights how different density functional approximations relate geometries, densities, and energies.

20.
Chemistry ; 26(30): 6839-6845, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-31692122

RESUMO

This article dwells on the nature of "inverted bonds", which refer to the σ interaction between two sp hybrids by their smaller lobes, and their presence in [1.1.1]propellane. Firstly, we study H3 C-C models of C-C bonds with frozen H-C-C angles reproducing the constraints of various degrees of "inversion". Secondly, the molecular orbital (MO) properties of [1.1.1]propellane and [1.1.1]bicyclopentane are analyzed with the help of orbital forces as a criterion of bonding/antibonding character and as a basis to evaluate bond energies. Triplet and cationic states of [1.1.1]propellane species are also considered to confirm the bonding/antibonding character of MOs in the parent molecule. These approaches show an essentially non-bonding character of the σ central C-C interaction in propellane. Within the MO theory, this bonding is thus only due to π-type MOs (also called "banana" MOs or "bridge" MOs) and its total energy is evaluated to approximately 50 kcal mol-1 . In bicyclopentane, despite a strong σ-type repulsion, a weak bonding (15-20 kcal mol-1 ) exists between both central C-C bonds, also due to π-type interactions, though no bond is present in the Lewis structure. Overall, the so-called "inverted" bond, as resulting from a σ overlap of the two sp hybrids by their smaller lobes, appears highly questionable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...